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3. INNER PRODUCT SPACES 
 

§3.1. Definition 
 So far we have studied abstract vector spaces.  These are a generalisation of the geometric 

spaces R
2
 and R

3
.  But these have more structure than just that of a vector space.  In R

2
 and R

3
 we 

have the concepts of lengths and angles.  In those spaces we use the dot product for this purpose, 

but the dot product only makes sense when we have components.  In the absence of components we 

introduce something called an inner product to play the role of the dot product.  We consider only 

vector spaces over C, or some subfield of C, such as R. 

 An inner product space is a vector space  V  over C  together with a function (called an 

inner product) that associates with every pair of vectors in  V  a complex number u | v such that: 

(1) vuuv   for all u, v  V; 

(2) wvwuwvu   for all u, v, w  V; 

(3) vuvu    for all u, v  V and all   C; 

(4) vv  is real and  0 for all v  V; 

(5) vv  = 0 if and only if v = 0. 

These are known as the axioms for an inner product space (along with the usual vector space 

axioms). 

 A Euclidean space is a vector space over R, where vu  R for all u, v and where the 

above five axioms hold.  In this case we can simplify the axioms slightly: 

(1) vuuv   for all u, v  V; 

(2) wvwuwvu   for all u, v, w  V; 

(3) vuvu    for all u, v  V and all   C; 

(4) vv   0 for all v  V; 

(5) vv  = 0 if and only if v = 0. 

 

Example 1: Take V = R
n
 as a vector space over R and define vu = u1v1 + ... + unvn where 

u = (u1, …, un) and v = (v1, …, vn)  (the usual dot product).  This makes R
n
 into a Euclidean space. 

When n = 2 we can interpret this geometrically as the real Euclidean plane.  When n = 3 this is the 

usual Euclidean space. 

 

Example 2: Take V = C
n
 as a vector space over C and define nn vuvuvu  ...11 where 

u = (u1, …, un) and v = (v1, …, vn). 

 

Example 3: Take V = Mn(R), the space of nn matrices over R where A | B = trace(A
T
B).  

Note, this becomes the usual dot product if we consider an n  n matrix as a vector with n
2
 

components, since trace(A
T
B) = 



n

ji

ijijba
1,

if A = (aij) and B = (bij). 

 

Example 4: Show that R
2
 can be made into a Euclidean space by defining 

u1 | u2 = 5x1x2  x1y2  x2y1 + 5y1y2 

when u1 = (x1, y1) and u2 = (x2, y2). 

Solution: We check the five axioms. 
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(1)  u2 | u1 = 5x2x1  x2y1  x1y2 + 5y2y1 =  u1 | u2. 

(2) If u3 = (x3, y3) then u1 + u2 | u3 = 5(x1 + x2)x3  x3(y1 + y2)  (x1 + x2)y3 + 5(y1 + y2)y3 

                                                       = 5x1x3 + 5x2x3  x3y1  x3y2  x1y3  x2y3 + 5y1y3 + 5y2y3 

                                                            = (5x1x3  x3y1  x1y3 + 5y1y3) + (5x2x3  x3y2  x2y3 + 5y2y3) 

                                                       = u1 | u3 + u2 | u3. 

(3) u1 | u2 = 5(x1)x2  x2(y1)  (x1)y2 + 5(y1)y2 

                    =  [5x1x2  x2y1  x1y2 + 5y1y2] 

                    = u1 | u3. 

(4)  If v = (x, y) then v | v = 5x
2
 2xy + 5y

2
 

             = 5(x
2
  2xy/5 + y

2
) 

             = 5(x  y/5)
2
 + 24y

2
/25 

              0 for all x, y. 

(5) v | v = 0 if and only if x = y/5 and y = 0, that is, if and only if v = 0. 

 

 Now we move to a rather different sort of inner product, but one that still satisfies tha above 

axioms.  Inner product spaces of this type are very important in mathematics. 

 

Example 5: Take V to be the space of continuous functions of a real variable and define 

  dxxvxuxvxu 

2

0

)()()(  

NOTE: Axioms (2), (3) show that the function u  vu is a linear transformation for a fixed v. 

However uvu   is not linear since uvvuvuvuuv   . 

 

§3.2. Lengths and Distances 
 The length of a vector in an inner product space is defined by: 

vvv   . 

(Remember that vv  is real and non-negative.  The square root is the non-negative one.) 

So the zero vector is the only one with zero length.  All other vectors in an inner product space have 

positive length. 

 

Example 6: In R
3
, with the dot product as inner product, the length of (x, y, z) is x

2
 + y

2
 + z

2
 . 

Example 6: If  V  is the space of continuous functions of a real variable and 

       
1

0

dxxvxuxvxu = 

0

1

f(x)g(x) dx  then the length of f(x) = x
2
 is 

1

0

4 dxx  = 
1

5
 . 

 

 The following properties of length are easily proved. 

 

Theorem 1: For all vectors u, v and all scalars : 

(1) |v| = ||.|v|; 

(2) |v|  0; 

(3) |v| = 0 if and only if v = 0. 
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Theorem 2 (Cauchy Schwarz Inequality): 

|u | v|  |u|.|v|. 

Equality holds if and only if u = 
u | v v

|v|
2  . 

Proof: Let d = 
u | v

|v|
2  . 

Now |u  dv|
2
 = u  dv | u  dv 

                       = u | u  d v | u d u | v + dd v | v 

                       = |u|
2
  2dd |v|

2
 + dd |v|

2
 

                       = |u|
2
  |d|

2
|v|

2
 

                       = |u|
2
  

|u | v|
2

|v|
2   

Since |u  dv|
2
  0, |u|

2
|v|

2
  |u | v|

2
. 

 

Example 7: In R
n
 we have      

222

iiii yxyx . 

 

Example 8: 












0

1

f(x)g(x) dx  

2

  












0

1

f(x)
2
 dx  












0

1

g(x)
2
 dx  . 

 

 The Triangle Inequality in the Euclidean plane states no side of a triangle can be longer than 

the sum of the other two sides.  It is usually proved geometrically, or appealing to the principle that 

the shortest distance between two points is a straight line.  In a general inner product space we must 

prove it from the axioms. 

  

Theorem 3 (Triangle Inequality): For all vectors u, v:  |u + v|  |u| + |v|. 

Proof: |u + v|
2
 = u + v | u + v 

                       = u | u + v | v + u | v + v | u 

                       = |u|
2
 + |v|

2
 + 2Re(u | v) 

                        |u|
2
 + |v|

2
 + 2|u | v| 

                        |u|
2
 + |v|

2
 + 2|u|.|v| 

                        (|u| + |v|)
2
 

So |u + v|  |u| + |v|. 

  

 We define the distance between two vectors u, v to be |u  v|.  The distance version of the 

Triangle Inequality is as follows.  If u, v, w are the vertices of a triangle in an inner product space  

V  then |u  w|  |u  v| + |v  w|.  It follows from the length version as u  w = (u  v) + (v  w). 

If we take u, v, w to be vertices of a triangle in the Euclidean plane this gives the geometric version 

of the Triangle Inequality. 

  

§3.3. Orthogonality 
 It is not possible to define angles in a general inner product space, because inner products 

need not be real.  But in any Euclidean space we can define these geometrical concepts even if the 

vectors have no obvious geometric significance. 
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Now we can use the Cauchy Schwarz inequality to define the angle between vectors. 

If u, v are non-zero vectors the angle between them is defined to be cos
1







u | v

|u|.|v|
 .  The Cauchy 

Schwarz inequality ensures that 
u | v

|u|.|v|
 lies between 1 and 1.  The angle between the vectors is /2 

if and only if u | v = 0. 

 

Example 9: Suppose we define the inner product between two continuous functions by 



2/

0

)()(



dxxvxuvu .  If u(x) = sin x and v(x) = x find the angle, between them in degrees. 

Solution:  

2/

0

sin



dxxxvu  

                          =  
0

2/
cossin


xxx    (integrating by parts) 

                          = 1. 

    

2/

0

2sin



dxxxuxu  

                =  






 
2/

0
2

2cos1


dx
x

 

                = 
0

2/
2sin

4

1

2










 x

x
 

                = 
4


 which is approximately 0.7854. 

Hence |u(x)| is approximately 0.8862. 

    

2/

0

2



dxxxvxv  

                = 
0

2/

3

3 







 x
 

                = 
24

3
 which is approximately 1.2919. 

Hence |v(x)} is approximately 1.1366. 

So if the angle (in degrees) between these two functions is  then 

cos   
1

0.8862*1.1366
  

1

1.00725
   0.9928. 

Hence   6.8796. 

NOTE: Measuring the angle between two functions in degrees is rather useless and is done here 

only as a curiosity.  By far the major application of angles in function spaces is to orthogonality.  

This is a concept that is meaningful for all inner product spaces, not just Euclidean ones. 

  

 Two vectors in an inner product space are orthogonal if their inner product is zero.  The 

same definition applies to Euclidean spaces, where angles are defined and there orthogonality 

means that either the angle between the vectors is /2 or one of the vectors is zero.  So 

orthogonality is slightly more general than perpendicularity. 

 

 A vector  v  in an inner product space is a unit vector if |v| = 1. 
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 We define a set of vectors to be orthonormal if they are all unit vectors and each one is 

orthogonal to each of the others.  An orthonormal basis is simply a basis that is orthonormal.  Note 

that there is no such thing as an “orthonormal vector”.  The property applies to a whole set of 

vectors, not to an individual vector. 

 

Theorem 4: An orthonormal set of vectors {v1, …, vn} is linearly independent. 

Proof: Suppose 1v1 + … + nvn = 0. 

Then 1v1 + … + nvn | vr = 0 for each r. 

But 1v1 + … + nvn | vr = 1v1 | vr + … + nvn | vr 

                                          = rvr | vr since vr is orthogonal to the other vectors in the set 

                                          = r since vr | vr = |vr|
2
 = 1. 

Hence each r = 0. 

 

 Because of the above theorem, if we want to show that a set of vectors is an orthonormal 

basis we need only show that it is orthonormal and that it spans the space.  Linear independences 

come free. 

 Another important consequence of the above theorem is that it is very easy to find the 

coordinates of a vector relative to an orthonormal basis. 

 

Theorem 5: If 1, 2, ..., n is an orthogonal basis for the inner product V, and v  V, then 






























nx

x

x

v


2

1


 where 

2

i

i

i

v
x




 . 

Proof: Let v = x11 + x22 + ... + xnn. 

Then 
j

jiji xv   

                   = xj jj   since the i are mutually orthogonal 

 

Example 10: Consider R
3
 as an inner product space with the usual inner product. 

Show that the set 






1

3
,  

2

3
,  

2

3
 , 








 
2

3
,  

2

3
,   

1

3
 , 








 
2

3
,   

1

3
,  

2

3
  is an orthonormal basis for R

3
. 

Solution: They are clearly mutually orthogonal and, since 
1

9
 + 

4

9
  + 

4

9
  = 1 they are all unit vectors.  

Hence they are linearly independent and so span a 3-dimensional subspace of R
3
.  Clearly this must 

be the whole of R
3
. 

 

Example 11: Find the coordinates of (3, 4, 5) relative to the above orthonormal basis. 

Solution: 

(3, 4, 5) | (1/3, 2/3, 2/3) = 7 

(3, 4, 5) | (2/3, 2/3, 1/3) = 1 

(3, 4, 5) | (2/3, 1/3, 2/3) = 0. 

Hence the coordinates are (7, 1, 0).  In other words, (3, 4, 5) = 7






1

3
,  

2

3
,  

2

3
    









 
2

3
,  

2

3
,   

1

3
 . 

 

Example 12: In C
2
 as an inner product space with the inner product 

(x1, y1) | (x2, y2) = x1x2 + y1y2 

show that the vectors  (2  i, 3  4i) and (3  4i, 2/5 + 11/5 i) are orthogonal.  Use them to find an 

orthonormal basis for C
2
. 
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Solution: (2  i)(3 + 4i) + (3  4i)(2/5  11/5 i) = 10 + 5i 10  5i = 0. 

|(2  i, 3  4i)| = 5 + 25  = 30  and 

|(3  4i, 2/5 + 11/5 i)| = 5 + 5  = 10 . 

Hence { 1

30
 (2  i, 3  4i),   

1

10
 (3  4i, 2/5 + 11/5 i)} is an orthonormal basis. 

 

Theorem 6 (Gram-Schmidt): 

Every finite-dimensional inner product space  V  has an orthonormal basis. 

Proof: We prove this by induction on the dimension of V. 

If dim(V) = 0 then the empty set is an orthonormal basis. 

Suppose that every vector space of dimension n has an orthonormal basis of V and suppose that V is 

a vector space of dimension n + 1. 

Let {u1, …, un+1} be a basis for V and let U = v1, …, vn. 

By the induction hypothesis U has an orthonormal basis v1, …, vn. 

Define w = un+1  un+1 | v1v1  …  un+1 | vnvn. 

Then for each i, w | vi = un+1 | vi  un+1 | vivi | vi, since vj | vi = 0 when i  j 

                                       = un+1 | vi  v | vi since vi | vi = 1 

                                       = 0. 

Hence w is orthogonal to each of the vi.  But it may not be a unit vector, but it is non-zero.  So we 

may divide it by its length without affecting orthogonality. 

So we define vn+1 = 
1

|w|
 w and so obtain an orthonormal basis {v1, …, vn, vn+1} for V.   

 

 In practice it is inconvenient to normalise the vectors (divide by their length) as we go, 

because we will have to carry these lengths along into our subsequent calculations.  It’s much easier 

to produce an orthogonal basis and then to normalise at the end. 

 

GRAM-SCHMIDT ALGORITHM 
{u1, u2, ..., un} is a given basis; 

{v1, v2, ..., vn} is an orthogonal basis; 

{w1, w2, ..., wn} is an orthonormal basis. 

(1) LET v1 = u1. 

(2) FOR r = 2 TO n, LET 

vr = ur  
ur|v1

|v1|
2  v1  

ur|v2

|v2|
2  v2  ......  

ur|vr1

|vr1|
2  vr1. 

Multiply by a convenient factor to remove fractions. 

(4) FOR r = 1 TO n, LET wr = 
vr

|vr|
 . 

 

Example 13: Find an orthonormal basis for V = (1, 1, 1, 1), (1, 2, 3, 4), (1, 1, 1, 0). 

Solution: 

 u = basis v = orthogonal basis |v| w = orthonormal basis 

1 (1, 1, 1, 1) (1, 1, 1, 1) 2 1

2
 (1, 1, 1, 1) 

2 (1, 2, 3, 4) (3, 1, 1, 3) 25 1

2 5
 (3, 1, 1, 3) 

3  (1, 1, 1, 0) (12, 26, 16, 2) 306  1

3 30
 (6, 13, 8, 1) 
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WORKING: v2 = u2  
u2|v1

|v1|
2  v1 = (1, 2, 3, 4)  

10

4
 (1, 1, 1, 1) = (1, 2, 3, 4)  

5

2
 (1, 1, 1, 1). 

Multiply by 2, so now v2 = (2, 4, 6, 8)  5(1, 1, 1, 1) = (3, 1, 1, 3). 

v3 = u3  
u3|v1

|v1|
2  v1  

u3|v2

|v2|
2  v2 = (1, 1, 1, 0)  (1, 1, 1, 1)  







1

20
 (3, 1, 1, 3). 

Multiply by 20, so now v3 = (20, 20, 20, 0)  (5, 5, 5, 5) + (3, 1, 1, 3) = (12, 26, 16, 2). 

 

Example 14: Let V be the function space 1, x, x
2
 made into a Euclidean space by defining 

       
1

0

dxxvxuxvxu .  Find an orthonormal basis for V. 

Solution: 

 u = basis v = orthogonal basis |v| w = orthonormal basis 

1 1 1 1 1 

2 x 2x  1 1

3
  

3 (2x  1) 

3 x
2 

6x
2
  6x + 1 1

5
  

5 (6x
2
  6x + 1) 

 

WORKING: 

   
2

1

0

1

2

1 2

1

0

12 







  xdxxxvxu . 

    1
0

1
1

1

0

2

1   xdxxv  

v2(x) = u2(x)  
u2(x)|v1(x)

|v1(x)|
2  v1(x) = x  

1

2
 . 

Multiply by 2, so now v2(x) = 2x  1. 

   
3

1

0

1

3

1 3

1

0

2

13 







  xxxvxu . 

     
6

1

0

1

3

1

2

1
212 34

1

0

23

1

0

2

23 







  xxdxxxdxxxxvxu . 

   
3

1

0

1
2

3

4
14412 23

1

0

2

1

0

22

2 







  xxxdxxxdxxxv . 

v3(x) = u3(x)  
u3(x)|v1(x)

|v1(x)|
2  v1(x)  

u3(x)|v2(x)

|v2(x)|
2  v2(x) 

                                                   = x
2
  

1

3
  

1/6

1/3
 (2x  1) 

                                                   = x
2
  

1

3
   

1

2
 (2x  1) 

Multiply by 6, so now v3(x) = 6x
2
  2  3(2x  1) 

                                           = 6x
2
  6x + 1. 

   
5

1

0

1
61618

5

36
112487236166 2345

1

0

234

1

0

222

3 







  xxxxxdxxxxxdxxxxv
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§3.4. Fourier Series 
 The most important applications of inner product spaces involves function spaces with the 

inner product defined by means of an integral.  Fourier series are infinite series in an infinite 

dimensional function space.  However it is not appropriate here to give more than a cursory 

overview because to discuss them properly requires not only a good knowledge of integration, but a 

deep understanding of the convergence of infinite series. 

 For any positive integer  n  the functions 1, cos nx and sin nx are periodic, with period 2.  

[This does not mean that they do not have smaller period, but simply that for each of them 

f(x + 2) = f(x) for all x.] 

Take the space T spanned by all of these functions. 

So T = 1, cos x, cos 2x, ..., sin x, sin 2x, .... 

Define the inner product on T as 

2

0

)()()()( dxxvxuxvxu .  T is an infinite dimensional vector 

space.  Clearly, for every function f(x)  T, f(x + 2) = f(x).  If f(x) is a continuous function for 

which f(x + 2) = f(x) we may ask whether f(x)  T.  The answer is usually no.  Such an f(x) may 

not be a linear combination of 1, cos x, cos 2x, ..., sin x, sin 2x, ...  But remember that a linear 

combination is a finite linear combination.  It may well be that f(x) can be expressed as an infinite 

series involving these functions.  That is we might have f(x) = a0 +  





1

sincos
n

nn nxbnxa .  Such a 

series is called a Fourier series, named after the French mathematician Joseph de Fourier [1768 – 

1830].  Of course, for this to make sense we would need this series to converge, which why we need 

to know a lot about infinite series in order to study Fourier series. 

 But suppose we limit the values of n.  Let TN = 1, sin x, sin 2x, ..., cos x, cos 2x, ....  We 

can show that these 2N + 1 functions are linearly independent.  In fact, they are mutually 

orthogonal.  So TN is a 2N + 1 dimensional Euclidean space. 

 For n > 0, 

2

0

22
coscos dxnxnx =  and 

2
sin x = 

2

0

2sin dxnx  = .  Clearly |1|
2
 = 

2

0

1dx  = 2.  

(Remember that |1| here is not the absolute value but rather the length of the function 1.) 

By theorem 5, if F(x) = a0 +  



N

n

nn nxbnxa
1

sincos  then a0 = 
 

2
1

1xF
 = 





2

0

)(
2

1
dxxF  and, 

if n > 0, an = 
 

2
cos

cos

nx

nxxF
 = 





2

0

cos)(
1

dxnxxF  and bn = 
 

2
sin

sin

nx

nxxF
 = 





2

0

sin)(
1

dxnxxF . 

 A function in TN must be continuous and have period 2. But by no means does every such 

function belong to TN.  However if F(x) is continuous and has period 2 then it can be 

approximated by a function in TN, with the approximation getting better as N becomes larger.  Even 

functions with period 2 having some discontinuities can be so approximated.  (We won’t go into 

details here as to the precise conditions, or how close the approximation will be.) 

 If F
(N)

(x) is the approximation to F(x) in TN then F
(N)

(x) =  a0 +  



N

n

nn nxbnxa
1

sincos  

where a0 = 
 






2

0

)(
2

1
dxxF N

 and, if n > 0, an = 
 






2

0

cos)(
1

dxnxxF N
 and bn = 

 





2

0

sin)(
1

dxnxxF N
. 

Now it can be shown that generally these integrals can be approximated by the corresponding 

integrals with F
(N)

 replaced by F(x).  Letting N   it can be shown that if F[x] can be expressed as 

a Fourier series a0 +  





1

sincos
n

nn nxbnxa  then a0 = 




2

0

)(
2

1
dxxF  and, if n > 0, 



 37 

an = 




2

0

cos)(
1

dxnxxF  and bn = 




2

0

sin)(
1

dxnxxF . 

 

Example 15: Find the Fourier series for the function 





F(x) = x if 0  x  /2

F(x) =   x if /2  x  3/2

F(x) = x  2

F(x + 2) = F(x) for all x

  

Answer: The solution involves a fair bit of integration by parts and, since this is not a calculus 

course, we omit the details and simply give the answer. 

F(x) = 







 

222 5

5sin

3

3sin

1

sin4 xxx


. 

 

 

 

 

 

 

 

 

 

 

§3.5. Orthogonal Complements 
 In R

3
 the normal to a plane through the origin is a plane through the origin.  Every vector in 

the plane is orthogonal (i.e. perpendicular if they are non-zero) to every vector along the line.  The 

line and the plane are said to be orthogonal complements of one another. 

 

 

 

 

 

 

 

 

 

 The orthogonal complement of a subspace U, of V is defined to be: 

U

 = {v  V | u | v = 0 for all u  U}. 

Intuitively it would seem that U


 should be U, but there are examples where this is not so.  

However for finite-dimensional subspaces it is true.  This follows from the following important 

theorem. 

 

Theorem 7: If  U  is a finite-dimensional subspace of  the vector space then U

 is also subspace 

of V and V = U  U

. 

Proof: (1) U

 is a subspace of V. 

Let v, w  U

 and let u  U.  Then u | v + w = u | v + u | w = 0 + 0 = 0. 

Hence v + w  U
T
. 

Let v  U

 and let  be a scalar.  Then u | v =u | v =.0 = 0. 

Hence v  U

 and so we have shown that U


 is a subspace. 

(2) U  U

 = 0. 

/2  3/2 

2 

0 

/2 

/2 
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Suppose v  U  U

.  Then  v  is orthogonal to itself, and so v | v = 0.  By the axioms of an inner 

product space this implies that v = 0. 

(3) V = U + U

. 

Let u1, … un be an orthonormal basis for U. 

Let v  V, u = v | u1u1  …  v | unun and let w = v  u. 

Then for each i, w | ui = v | ui  v | uiui | ui since uj | ui = 0 if i  j 

                                      = v | ui  v | ui since ui | ui = 1 

                                      = 0. 

Hence w  U

.  Clearly u  U.  So v = u + w  U + U


. 

 

Theorem 8: If U is a subspace of a finite-dimensional vector space then U


 = U. 

Proof: Suppose u  U and let v  U

.  Then u | v = 0.  Hence v | u = 0.  Since this holds for all 

v  U

,  and so u  U


.  So it follows that U  U


. 

Now V = U  U

 = U


  U


 so dim U = dim U


.  Hence U = U


. 

 

EXERCISES FOR CHAPTER 3 
 

Exercise 1: If v1 = (x1, y1) and v2 = (x2, y2) define u | v = 2x1x2  2x1y2  2x2y1 + 5y1y2 and 

[u | v] = 2x1x2 + 2x1y2 + 2x2y1 + y1y2.  Show that under one of these products R
2
 becomes a 

Euclidean space and under the other it is not a Euclidean space. 

 

Exercise 2: Find an orthonormal basis for (2, 2, 1), (3, 1, 5). 

 

Exercise 3: Find an orthonormal basis for (1, 1, 0, 1, 1), (1, 0, 1, 1, 1), (1, 1, 1, 0, 1), (1, 1, 1, 1, 0). 

 

Exercise 4: Find an orthonormal basis for the function space 1, x, x where 

       
1

0

dxxvxuxvxu . 

 

Exercise 5: Find an orthonormal basis for the function space 1, 2x, sin x where 

       

2/

0



dxxvxuxvxu . 

 

Exercise 6: Find the orthogonal complement for (1, 3, 6), (2, 1, 2) in R
3
. 

 

Exercise 7: Find the orthogonal complement of (1, 1, 1, 1), (1, 0, 1, 0) in R
4
. 

 

Exercise 8: Find the orthogonal complement of 1, x in the vector space 1, x, x
2
, where 

 xvxu )( is defined to be    dxxvxu
1

0

. 
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SOLUTIONS FOR CHAPTER 3 
 

Exercise 1: Axioms (1), (2), (3) are easily checked for both products.  The simplest way to check 

them is to let A = 












32

22
 and B = 









12

22
.  Then u | v = uAv

T
 and [u | v] = uBv

T
.  It is now 

very simple to check these first three axioms. 

(4) If v = (x, y) then v | v = 2x
2
  4xy + 5y

2 
= 2(x  y)

2
 + 3y

2
  0 for all x, y. 

     If v = (x, y) then [v | v] = 2x
2
 + 4xy + y

2 
= 2(x + y)

2
  y

2
.  When x = 1 and y =  1 this is 

negative.  Hence under the product [u | v] R
2
 is not a Euclidean space. 

(5) If v | v = 0 then x = y and y = 0 so v = 0. 

Hence under the product v | v, R
2
 is a Euclidean space. 

 

Exercise 2: 

 u = basis v = orthogonal basis |v| w = orthonormal basis 

1 (2, 2, 1) (2, 2, 1) 3 1

3
 (2, 2, 1) 

2 (3, 1, 5) (1, 1, 6) 38  1

38
 (1, 1, 6) 

WORKING: v2 = u2  
u2|v1

|v1|
2  v1 = (3, 1, 5)  

3

3
 (2, 2, 1) = (3, 1, 5)  (2, 2, 1) = (1, 1, 6). 

 

Exercise 3: 

 u = basis v = orthogonal basis |v| w = orthonormal basis 

1 (1, 1, 0, 1, 1) (1, 1, 0, 1, 1) 2 1

2
 (1, 1, 0, 1, 1) 

2 (1, 0, 1, 1, 1) (1, 3, 4, 1, 1) 28  1

28
 (1, 3, 4, 1, 1) 

3 (1, 1, 1, 0, 1) (1, 4, 4, 6, 1) 70  1

70
 (1, 4, 4, 6, 1) 

4 (1, 1, 1, 1, 0) (91, 49, 56, 49, 231) 69580  1

69580
 (91, 49, 56, 49, 231) 

WORKING: v2 = u2  
u2|v1

|v1|
2  v1 = (1, 0, 1, 1, 1)  

3

4
 (1, 1, 0, 1, 1). 

Multiply by 4.  Now v2 = (4, 0, 4, 4, 4)  (3, 3, 0, 3, 3) = (1, 3, 4, 1, 1). 

v3 = u3  
u3|v1

|v1|
2  v1  

u3|v2

|v2|
2  v2 = (1, 1, 1, 0, 1)  

3

4
 (1, 1, 0, 1, 1)  

3

28
 (1, 3, 4, 1, 1). 

Multiply by 28.  Now v3 = (28, 28, 28, 0, 28)  (21, 21, 0, 21, 21)  (3, 9, 12, 3, 3) 

                                      = (4, 16, 16, 24, 4). 

Divide by 4.  Now v3 = (1, 4, 4, 6, 1). 

v4 = u4  
u4|v1

|v1|
2  v1  

u4|v2

|v2|
2  v2  

u4|v3

|v3|
2  v3 = (1, 1, 1, 1, 0)  

3

2
 (1, 1, 0, 1, 1)  

3

28
 (1, 3, 4, 1, 1) 

 
3

70
 (1, 4, 4, 6, 1). 

Multiply by 140.  Now v4 = (140, 140, 140, 140, 0)  (210, 210, 0, 210, 210)  (15, 45, 60, 15, 15) 

 (6, 24, 24, 36, 6) 

= (91, 49, 56, 49, 231). 
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Exercise 4: 

 u = basis v = orthogonal basis |v| w = orthonormal basis 

1 1 1 1 1 

2 x 3x  2 1

2
  

2(3x  2) 

3 x
 

10x  12x + 3 1

3
  

3(10x  12x + 3) 

 

WORKING: 

    
1

0

12 dxxxvxu  =  
0

1

3

2 2/3









x  = 

3

2
. 

v2(x) = u2(x)  
u2(x)|v1(x)

|v1(x)|
2  v1(x) = x  

2/3

1
 .1 = x  

2

3
 . 

Multiply by 3, so now v2(x) = 3x  2. 

    

1

0

22

2 23 dxxxv  

           =   

1

0

4129 dxxx  

           = 
0

1
48

2

9 2/32









 xxx  

          = 48
2

9
  

          = 
2

1
. 

    dxxxvxu 
1

0

13  

                   = 
0

1

2

1 2









x  

                   = 
1

2
 . 

 

     dxxxxvxu  

1

0

23 23  

                    = dxx
1

0

2/33   dxx
1

0

2  

                   = 
0

1

2

1
2

0

1

5

2
3 22/5


















xx  

                  = 
6

5
   1 

                  = 
1

5
 . 

v3(x) = u3(x)  
u3(x)|v1(x)

|v1(x)|
2  v1(x)  

u3(x)|v2(x)

|v2(x)|
2  v2(x)  

         = x   
1/2

1
 .1  

1/5

1/2
 (3x  2) 
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         = x  
1

2
   

2

5
 (3x  2) 

         = x  
1

2
   

6

5
 x + 

4

5
  

         = x  
6

5
 x + 

3

10
  

. 

Multiplying by 10 we now take v3(x) = 10x  12x + 3. 

|v3(x)|
2
 =   

1

0

2

31210 dxxx  

           =   

1

0

2/32 72602409144100 dxxxxxx  

           =   

1

0

2/32 722409204100 dxxxxx  

           = 
0

1
48969102

3

100 2/32/523









 xxxxx  

           = 
100

3
 +102 + 9  96  48 

           = 
100

3
  33 

            = 
1

3
 . 

 

Exercise 5: 

 u = basis v = orthogonal basis |v| w = orthonormal basis 

1 1 1 

2


 



2
 

2 2x 2x   

6

33 23  
  





x2

33

6
23

 

3 sin x
 

 sin x  2 

2

83  
  2sin

8

2

3



x


 

 

WORKING: 

  

2/

0

2

1 1



dxxv  =  
0

2/
x  = 

2


 

    

2/

0

12 2



dxxxvxu  =   
0

2/
2


x  = 
4

2
 

v2(x) = u2(x)  
u2(x)|v1(x)

|v1(x)|
2  v1(x) = x  


2
/4

/2
 .1 = x  



2
 . 

Multiply by 2, so now v2(x) = 2x  . 

    

2/

0

22

2 2



 dxxxv  

           =   

2/

0

22 44



 dxxx  
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           = 
0

2/
2

3

4 223


 







 xxx  

          = 
2

1

2

1

6

1 23   

          =   33
6

1 23  . 

    dxxxvxu 

2/

0

13 sin



 

                   =  
0

2/
cos


x  

                   = 1. 

 

      dxxxxvxu  

2/

0

23 sin2



  

                    = dxxx
2/

0

sin2



  dxx
2/

0

sin



  

                   =   

2/

0

cos2
0

2/
cos2


dxxxx   dxx

2/

0

sin



  

                  = 0 +  
0

2/
sin2


x  +  

0

2/
cos


 x  

                  =    

                  = 0. 

v3(x) = u3(x)  
u3(x)|v1(x)

|v1(x)|
2  v1(x)  

u3(x)|v2(x)

|v2(x)|
2  v2(x)  

         = sin x   
2


 .1  0.(cos x  sin x) 

         = sin x  
2


 . 

Multiplying by  we now take v3(x) =  sin x  2. 

|v3(x)|
2
 =   

2/

0

2
2sin



 dxx  

           =   

2/

0

22 4sin4sin



 dxxx  

           = 
2/

0

22 sin



 dx   
2/

0

sin4



 dxx + 
2/

0

4



dx  

           =   

2/

0

2

2cos1
2




dxx   
2/

0

sin4



 dxx + 
2/

0

4



dx  

           = 
0

2/
2sin

2

1

2

2 








 xx  +  

0

2/
cos4


 x  + 2 

           = 







 0

22

2 
  4 + 2 
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           = 
4

3
  2 

           =   8
4

1 3  . 

 

Exercise 6: 

First Solution:  Let u1 = (2, 1, 2) and u2 = (2, 3, 6).  Suppose (x, y, z) is orthogonal to both u1 and 

u2.  Then 2x + y + 2z = 0 and 2x + 3y + 6z = 0. 










6

2

32

12
  









4

2

20

12
  









2

2

10

12
  









2

0

10

02
 so x= 0, z = k, y = 2k. 

Hence the orthogonal complement is (0,  2, 1). 

 

Second Solution: We could take, as a third vector (1, 1, 1), being outside of the space spanned by a 

and b, and use the Gram Schmidt process.  However we are content with an orthogonal basis. 

 u = basis v = orthogonal basis |v|
2 

1 (2, 1, 2) (2, 1, 2) 9 

2 (2, 3, 6) (5, 2, 4) 45 

3 (1, 1, 1) (0, 2, 1)  

WORKING: 

v2 = u2  
u2 | v1

|v1|
2  v1 

     = (2, 3, 6)  
19

9
 (2, 1, 2). 

Multiply by 9 to get the new v2 to be v2 = 9(2, 3, 6)  19(2, 1, 2) 

                                                             = (18, 27, 54)  (38, 19, 38) 

                                                             = (20, 8, 16). 

Perhaps it would now be a good idea to divide by 4 to get a new v2 as v2 = (5, 2, 4). 

u3 | v1 = 5 and u3 | v2 = 1. 

v3 = u3  
u3 | v1

|v1|
2  v1  

u3 | v2

|v2|
2  v2 

    = (1, 1, 1)  
5

9
 (2, 1, 2)  

1

45
 (5, 2, 4) 

Multiply by 45 to get a new v3 as v3 = (45, 45, 45)  (50, 25, 50)  (5, 2, 4) 

                                                       = (0, 18, 9). 

Divide by 9 to get a new v3 as v3 = (0, 2, 1). 

Hence the orthogonal complement is (0, 2, 1). 

 

Third Solution: A third method, that only works for R
3
, is to simply find u1  u2. 

u1  u2 = 

632

212

kji

= (6  6)i  (12  4)j + (6  2)k = (0, 8, 4).  So the orthogonal complement is 

(0, 8, 4) = (0, 2, 1). 

You can make up your own mind as to which is the easiest method! 

 

Exercise 7: Here we cannot use the vector product. 

Suppose (x, y, z, w) is orthogonal to both vectors.  Then we have a system of two homogeneous 

linear equations that is represented by 
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0101

1111
  









 1010

1111
  









1010

1111
. 

So w = h, z = k, y = h, x = k giving the vector (k, h, k, h). 

Taking h = 1, k = 0 and h = 0, k = 1, we get a basis for the orthogonal complement, which is 

(0, 1, 0, 1), (1, 0, 1, 0). 

 

Exercise 8:   dxcxbxa 1.

1

0

2

  = 
0

1

32

32









 x

c
x

b
ax = a + 

b

2
 + 

c

3
  and 

  dxxcxbxa .

1

0

2

  = 
0

1

432

432









 x

c
x

b
x

a
= 

a

2
  + 

b

3
 + 

c

4
 . 

Hence w(x) = a + bx + cx
2
 is orthogonal to both 1 and x if  a + 

b

2
 + 

c

3
  = 0  and  

a

2
  + 

b

3
 + 

c

4
 = 0. 

We solve the homogeneous system 








346

236
  









 110

236
. 

This gives c = k, b = k, 6a = 5k. 

Take k = 6.  Then a = 5, b = 6, c = 6 and hence w(x) = 5 + 6x + 6x
2
. 

Hence the orthogonal complement is 6x
2
 + 6x  5. 

 


